首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6642篇
  免费   1756篇
  国内免费   1457篇
测绘学   148篇
大气科学   202篇
地球物理   2118篇
地质学   5255篇
海洋学   899篇
天文学   12篇
综合类   454篇
自然地理   767篇
  2024年   11篇
  2023年   73篇
  2022年   167篇
  2021年   243篇
  2020年   265篇
  2019年   268篇
  2018年   268篇
  2017年   291篇
  2016年   328篇
  2015年   304篇
  2014年   395篇
  2013年   421篇
  2012年   390篇
  2011年   394篇
  2010年   356篇
  2009年   443篇
  2008年   465篇
  2007年   474篇
  2006年   428篇
  2005年   391篇
  2004年   402篇
  2003年   346篇
  2002年   323篇
  2001年   270篇
  2000年   276篇
  1999年   245篇
  1998年   234篇
  1997年   207篇
  1996年   201篇
  1995年   200篇
  1994年   159篇
  1993年   145篇
  1992年   107篇
  1991年   86篇
  1990年   70篇
  1989年   71篇
  1988年   44篇
  1987年   35篇
  1986年   19篇
  1985年   9篇
  1984年   11篇
  1983年   4篇
  1980年   3篇
  1979年   5篇
  1978年   1篇
  1954年   7篇
排序方式: 共有9855条查询结果,搜索用时 15 毫秒
101.
New pseudosection modelling was applied to better constrain the P–T conditions and evolution of glaucophane‐bearing rocks in the Tamayen block of the Yuli belt, recognized as the world's youngest known blueschist complex. Based on the predominant clinoamphibole, textural relationships, and mineral compositions, these glaucophane‐bearing high‐P rocks can be divided into four types. We focused on the three containing garnet. The chief phase assemblages are (in decreasing mode): amphibole + quartz + epidote + garnet + chlorite + rutile/titanite (Type‐I), phengite + amphibole + quartz + garnet + chlorite + epidote + titanite + biotite + magnetite (Type‐II), and amphibole + quartz + albite + epidote + garnet + rutile + hematite + titanite (Type‐III). Amphibole exhibits compositional zoning from core to rim as follows: glaucophane → pargasitic amphibole → actinolite (Type‐I), barroisite → Mg‐katophorite/taramite → Fe‐glaucophane (Type‐II), glaucophane → winchite (Type‐III). Using petrographic data, mineral compositions and Perple_X modelling (pseudosections and superimposed isopleths), peak P–T conditions were determined as 13 ± 1 kbar and 550 ± 40 °C for Type‐I, 10.5 ± 0.5 kbar and 560 ± 30 °C for Type‐II (thermal peak) and 11 ± 1 kbar and 530 ± 30 °C for Type‐III. The calculations yield higher pressures and temperatures than previously thought; the difference is ~1–6 kbar and 50–200 °C. The three rock types record similar P–T retrograde paths with clockwise trajectories; all rocks followed trajectories with substantial pressure decrease under near‐isothermal conditions (Type‐I and Type‐III), with the probable exception of Type‐II where decompression followed colder geotherms. The P–T paths suggest a tectonic environment in which the rocks were exhumed from maximum depths of ~45 km within a subduction channel along a relative cold geothermal gradient of ~11–14 °C km?1.  相似文献   
102.
Understanding the dynamics and mechanisms of soil water movement and solute transport is essential for accurately estimating recharge rates and evaluating the impacts of agricultural activities on groundwater resources. In a thick vadose zone (0–15 m) under irrigated cropland in the piedmont region of the North China Plain, soil water content, matric potential, and solute concentrations were measured. Based on these data, the dynamics of soil water and solutes were analysed to investigate the mechanisms of soil water and solute transport. The study showed that the 0–15‐m vadose zone can be divided into three layers: an infiltration and evaporation layer (0–2 m), an unsteady infiltration layer (2–6 m), and a quasi‐steady infiltration layer (6–15 m). The chloride, nitrate, and sulphate concentrations all showed greater variations in the upper soil layer (0–1 m) compared to values in the deep vadose zone (below 2 m). The average concentrations of these three anions in the deep vadose zone varied insignificantly with depth and approached values of 125, 242, and 116 mg/L. The accumulated chloride, sulphate, and nitrate were 2,179 ± 113, 1,760 ± 383, and 4,074 ± 421 kg/ha, respectively. The soil water potential and solute concentrations indicated that uniform flow and preferential flow both occurred in the deep vadose zone, and uniform flow was the dominant mechanism of soil water movement in this study. The piston‐like flow velocity of solute transport was 1.14 m per year, and the average value of calculated leached nitrate nitrogen was 107 kg/ha?year below the root zone. The results can be used to better understand recharge processes and improve groundwater resources management.  相似文献   
103.
104.
Streambed hydraulic conductivity (K) and vertical K (K v) are key controls on groundwater and surface water exchange and biogeochemical fluxes through the hyporheic zone, but drivers of transient hydraulic properties in different fluvial environments are poorly understood. This study combines hydrogeology, geophysics, and sedimentology to reveal mechanisms of K and K v transience in the upper 0.5 m of a sandy streambed during low discharge. Hydraulic tests (44 slug tests, 130 falling-head permeameter tests) and 130 grain-size analyses were repeated three times over 8 weeks on a 1,200 m2 grid spanning: (a) a channel with continuously flowing water and mobile bed load; (b) an adjacent mid-channel bar that was stationary and infrequently submerged. Aerial photographs and ground-penetrating radar show scour and complete reworking of fluvial sediments in the channel. Bar sediments below the water table remained immobile, but infrequent flows of moderate discharge reworked the uppermost few centimetres of the bar top. Despite differences in sediment mobility and stream flow characteristics across environments, K and K v exhibited order-of-magnitude differences in spatial heterogeneity and temporal variability in both the channel and bar. Mean K and K v values in the channel were comparatively stable over time. In the immobile bar, mean K declined 20% and K v declined 26% after increased discharge temporarily inundated the bar. Grain-size distributions were steady across both environments over time, but repeat geophysical surveys of the bar show a decrease in electrical conductivity, likely from porosity reduction. These findings suggest that sediment dynamics and stream flow characteristics in different streambed environments are important drivers of K transience during low discharge conditions. Specifically, pore clogging can be an important mechanism of transience over short durations (weeks to months) in immobile sediments subject to infrequent flows and minor reworking.  相似文献   
105.
Riparian plants can adapt their water uptake strategies based on climatic and hydrological conditions within a river basin. The response of cold-alpine riparian trees to changes in water availability is poorly understood. The Lhasa River is a representative cold-alpine river in South Tibet and an under-studied environment. Therefore, a 96 km section of the lower Lhasa River was selected for a study on the water-use patterns of riparian plants. Plant water, soil water, groundwater and river water were measured at three sites for δ18O and δ2H values during the warm-wet and cold-dry periods in 2018. Soil profiles differed in isotope values between seasons and with the distance along the river. During the cold-dry period, the upper parts of the soil profiles were significantly affected by evaporation. During the warm-wet period, the soil profile was influenced by precipitation infiltration in the upper reaches of the study area and by various water sources in the lower reaches. Calculations using the IsoSource model indicated that the mature salix and birch trees (Salix cheilophila Schneid. and Betula platyphylla Suk.) accessed water from multiple sources during the cold-dry period, whereas they sourced more than 70% of their requirement from the upper 60–80 cm of the soil profile during the warm-wet period. The model indicated that the immature rose willow tree (Tamarix ramosissima Ledeb) accessed 66% of its water from the surface soil during the cold-dry period, but used the deeper layers during the warm-wet period. The plant type was not the dominant factor driving water uptake patterns in mature plants. Our findings can contribute to strategies for the sustainable development of cold-alpine riparian ecosystems. It is recommended that reducing plantation density and collocating plants with different rooting depths would be conducive to optimal plant growth in this environment.  相似文献   
106.
Based on Landsat 8 remote sensing images, a combination of an unsupervised classification algorithm and artificial review was used to extract areas for Chinese offshore raft and cage aquaculture in 2018. The results of the extraction showed that China’s 2018 coastal zone raft aquaculture area comprised 194,110 ha, of which the province having the largest raft aquaculture area was Jiangsu (28.77 %), followed by Fujian (20.42 %) and Shandong (13.11 %). The cage aquaculture area covered 57,847,799 square meters, of which the provinces with the largest cage aquaculture area were Fujian (64.81 %), Guangdong (17.45 %), and Liaoning (5.63 %). In addition, by combining high-resolution remote sensing image visual interpretation and field investigation, the classification of 1200 sample points in four regions was determined, and the accuracy of the aquaculture area extraction was found to be 87.35 %. The extraction results can be used not only to evaluate China’s aquaculture production but also offer significant reference value for scientific planning related to sea use, ecological environmental protection, and marine disaster prevention and mitigation.  相似文献   
107.
The use of the sulphate mass balance (SMB) between precipitation and soil water as a supplementary method to estimate the diffuse recharge rate assumes that the sulphate in soil water originated entirely from atmospheric deposition; however, the origin of sulphate in soil and groundwater is often unclear, especially in loess aquifers. This study analysed the sulphur (δ34S-SO4) and oxygen (δ18O-SO4) isotopes of sulphate in precipitation, water-extractable soil water, and shallow groundwater samples and used these data along with hydrochemical data to determine the sources of sulphate in the thick unsaturated zone and groundwater of a loess aquifer. The results suggest that sulphate in groundwater mainly originated from old precipitation. When precipitation percolates through the unsaturated zone to recharge groundwater, sulphates were rarely dissolved due to the formation of CaCO3 film on the surface of sulphate minerals. The water-extractable sulphate in the deep unsaturated zone (>10 m) was mainly derived from the dissolution of evaporite minerals and there was no oxidation of sulphide minerals during the extraction of soil water by elutriating soil samples with deionized water. The water-extractable concentration of SO4 was not representative of the actual SO4 concentration in mobile soil water. Therefore, the recharge rate cannot be estimated by the SMB method using the water-extractable concentration of SO4 in the loess areas. This study is important for identifying sulphate sources and clarifying the proper method for estimating the recharge rate in loess aquifers.  相似文献   
108.
Stream–subsurface exchange plays a significant role in the fate and transport of contaminants in streams. It has been modelled explicitly by considering fundamental processes such as hydraulic exchange, colloid filtration, and contaminant interactions with streambed sediments and colloids. The models have been successfully applied to simulate the transport of inorganic metals and nutrients. In this study, laboratory experiments were conducted in a recirculating flume to investigate the exchange of a hydrophobic organic contaminant, p,p′‐dichloro‐diphenyl‐dichloroethane (DDE), between a stream and a quartz sand bed. A previously developed process‐based multiphase exchange model was modified by accounting for the p,p′‐DDE kinetic adsorption to and desorption from the bed sediments/colloids and was applied to interpret the experimental results. Model input parameters were obtained by conducting independent small‐scale batch experiments. Results indicate that the immobilization of p,p′‐DDE in the quartz sand bed can occur under representative natural stream conditions. The observed p,p′‐DDE exchange was successfully simulated by the process‐based model. The model sensitivity analysis results show that the exchange of p,p′‐DDE can be sensitive to either the sediment sorption/desorption parameters or colloidal parameters depending on the experimental conditions tested. For the experimental conditions employed here, the effect of colloids on contaminant transport is expected to be minimal, and the stream–subsurface exchange of p,p′‐DDE is dominated by the interaction of p,p′‐DDE with bed sediment. The work presented here contributes to a better mechanistic understanding of the complex transport process that hydrophobic organic contaminants undergo in natural streams and to the development of reliable, predictive models for the assessment of impacted streams. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   
109.
This paper presents an alternative Boussinesq equation considering hysteresis effect via a third‐order derivative term. By introducing an improved moisture–pressure retention function, this equation describes, with reasonable precision, groundwater propagation in coastal aquifers subject to Dirichlet boundary condition of different oscillation frequencies. Test results confirmed that it is necessary to consider horizontal and vertical flows in unsaturated zone, because of their variable influences on hysteresis. Hysteresis in unsaturated zone can affect the water table wave number of groundwater wave motion, such as wave damping rate and phase lag. Oscillations with different periods exert different hysteresis effect on wave propagation. Truncation/shrinkage of unsaturated zones also affects the strength of hysteresis. These impacts can be reflected in the alternative Boussinesq equation by adjusting the parameter representing the variation rate of moisture associated with pressure change, as opposed to traditional computationally expensive hysteresis algorithms. The present Boussinesq equation is simple to use and can provide feasible basis for future coupling of groundwater and surface water models. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   
110.
Macropores are subsurface connected void spaces caused by processes such as fracture of soils, micro‐erosion, and fauna burrows. They are common near streams (e.g. hyporheic and riparian zones) and may act as preferential flow paths between surface and groundwaters, affecting hydrologic and biogeochemical processes. We tested the hydrologic function of macropores by constructing an artificial macropore within the saturated zone of a meander bend (open macropore, ‘OM’) and later filling its upstream end (partially filled macropore, ‘PFM’). For each treatment, we injected saline tracer at an upgradient monitoring well within the meander and monitored downgradient hydraulics and tracer transport. Pressure transducers in monitoring wells indicated hydraulic gradients within the meander were 32% higher perpendicular to and 6% higher parallel to the macropore for the OM than for the PFM. Additionally, hydraulic conductivities measured via falling head tests were 29 to 550 times higher along the macropore than in nearby sediment. We used electrical conductivity probes in wells and electrical resistivity imaging to track solute transport. Transport velocities through the meander were on average 9 and 21% higher (per temporal moment analysis and observed tracer peak, respectively) for the OM than for the PFM. Furthermore, temporal moments of tracer breakthrough analysis indicated downgradient longitudinal dispersion and breakthrough tracer curve tailing were on average 234% and 182% higher for the OM, respectively. This suggests the OM enabled solute transport at overall shorter timescales than the matrix but also increased tailing. Our results demonstrate the importance of macropores to meander bend hydrology and solute transport. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号